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ABSTRACT

This project investigates a statistical method for analyzing the error on predictions
made through the process of time-delay-embedding of chaotic time series.

When viewed as a time-series, chaotic data appears to be unpredictable and
random. A chaotic system actually has an orderly representation when viewed in its
proper state space (the space consisting of the pertinent variables of the system.) A very
remarkable result from the study of chaotic dynamical systems shows that present in
almost any single time series is information from all the variables of the state space. The
technique of time-delay-embedding provides a method for making predictions on the
evolution of this time series.

In this method of prediction, one must choose a parameter k, the number of near
neighbors in phase space to fit the model to. This project answers the question by
describing an algorithm for determining the largest k such that the model adequately fits
the data. A prediction is then made from this model along with confidence intervals
which measure the reliability of the expected response. While this project involved many
different data sets, the purpose was not to analyze these specific data sets, but to develop
a general algorithm which could theoretically be used on any chaotic system.

KEYWORDS: chaos, time-series embedding, prediction, confidence intervals,
dynamical systems, noise.
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1. INTRODUCTION

1.1. A COMPARISON OF TWO TIME SERIES

A great deal of work has been done to study erratic time series. In Figures
(1.1) and (1.2), we present two different time series, one from an actual chemical
experiment, the other is from a hypothetical experiment.

The time series in Figure (1.1) was generated from the Belousov-Zhabotinski
(BZ) reaction in a continuous-flow stirred-tank reactor. The data was collected in
a forty hour laboratory experiment by Dr. Milos Dolnik at Brandeis University, De-
partment of Chemistry and Center for Complex Systems. Instead of monotonically
approaching an equilibrium state, the concentrations of the reactants oscillate spo-
radically. The time series in Figure (1.2) was generated from a random source to
provide an example of a stochastic time series.

Concentration of R eactant A
(mal/dm?) 2

0 10 70 30 0
Timse (hours)

Figure 1.1: Time series from BZ reaction.

Suppose that we suspect the BZ reaction to be deterministic. How could
we predict the evolution of the system from a current state? One way would be
to model the system based on theoretical considerations of chemistry and records of
actual data. The BZ reaction has been modeled with three nonlinear ODE’s (Gydrgyi
and Field, 1992). In science such an approach is desirable, but not always possible,
especially in a case where all one has is a time series, without knowledge of the system
which produced it.
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Figure 1.2: Time series generated from a stochastic source.

We will use techniques from recent developments in nonlinear time series
analysis to make predictions on the evolution of this time series. These methods
provide us a very general approach to this analysis. We will not use theoretical
considerations, nor time series from the other reactants, to generate a global model
of the system. The method revolves around producing a delay plot, which is a plot
of the dependent variable versus itself at previous times.

In Figure (1.3), 7 is the time interval between data samples. The fact that
this representation of the data appears to follow a curve, leads us to believe that
the data is generated from a deterministic process in such a way that each sample is
determined by the previous sample: z,11 = f(z,). Note the difference between the
delay plot of the BZ data with the delay plot of the stochastic data in Figure (1.4).

Judging from this representation of the second time series, there is not any
connection between one sample and the next. In general, this is how stochastic data
will appear. The delay plot will appear as a cloud of data points.

The natural way to make a prediction on the evolution of the first system
would be to draw a curve through the data, plug in a value on the x-axis, and read
off the value on the y-axis from the curve. It is important to remember that the
first time series was not generated to provide an example of a procedure which we
could theoretically apply to a physical system; the data was produced from a physical
laboratory experiment.




Concentration at time t+ 71 (mo]/dmg)

580
L
»’, . .
. . » R
-, s
.-u
N
* .
5201 . ’
» e
: .
o :s
L]
‘ YA
e
46260 520 580

Concentration at time ¢ {mol/dm?)

Figure 1.3: BZ reaction data as delay plot.
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Figure 1.4: Delay plot of stochastic data.




1.2. OUR CONTRIBUTION TO THE PHYSICAL SCIENTIST’S TOOL-
BOX

Say we are given a time series and are asked to make a prediction on its future
evolution. First, we would need to embed the time series in delay coordinates.
Determining a good embedding from a time series is not a trivial task. Current
literature addresses techniques to select the time delay and the embedding dimension
(i.e. number of delay axes) (Kantz and Schreiber, 1997; Abarbanel, 1996). In this
project, we assume that we have a good embedding (time delay embedding will be
discussed in detail in section 2.5). The state of the art is to linearly regress the k
nearest neighbors of the point to be predicted. How best to choose & is not addressed
in the literature (Kantz and Schreiber, 1997; Abarbanel, 1996). We would like to
bring a statistical approach to this dynamical systems question. The tool we develop
will do the following.

1) We will select the appropriate number, k, of near neighbors such that the
model adequately fits the data. There is a trade-off between choosing a large k vice
a small k. The number of near neighbors we choose for prediction will dictate the
size of the neighborhood to which we fit our polynomial. Taylor’s Theorem tells
us to choose a small k to minimize the local truncation error on the polynomial
approximation. Because the data contains noise, we would like to use a large k in
order to minimize the effect the errors have on the polynomial fit. Using data from a
large neighborhood, though requires a higher order polynomial, which then requires
more data. We determine the largest k such that the model is appropriate for the
data.

2) We will put confidence bounds on the prediction such that we are able
to deal with an interval prediction versus a point prediction. Current technology
allows time series embedding prediction to provide a point prediction, but does not
provide a statement about the quality of that prediction (Abarbanel, 1996; Kantz and
Schreiber, 1997; Sauer, 1994). By providing a region which we are, say, 95% certain
the true value of the prediction lies within, we are providing a means to measure the
reliability of the prediction. The model, along with the data to which it is fit, will
provide the confidence interval. Since our model is well fit, the confidence interval

will be appropriate.




2. CHAOTIC DYNAMICAL SYSTEMS

2.1. DYNAMICAL SYSTEMS

In order to talk about the statistical analysis done on chaotic dynamical systems,
we must first describe what we mean by a dynamical system. We begin with an
intuitive /physical description, and then give a rigorous mathematical definition.

It is enlightening to compare a dynamical system to an experiment involving
a physical system. This system could be a pendulum, a kettle of water, a billiard
table, or an internal combustion engine. In this experiment, we are interested in
observing how certain quantitative variables evolve over time. For the pendulum,
these variables might be the position and velocity of the bob. For the internal
combustion engine, these might be oil temperature and pressure, temperature of
engine block, and rate of fuel consumption. We start the experiment running and
observe what happens to the variables we are interested in. A dynamical system is
defined to be deterministic, i.e. there are no random influences on the system. So if
we start our experiment in a certain state, collect some data, and then restart it in
the original state, and collect a second set of data, the two sets of data will match
exactly. Remember that this is not our definition but only an analogy. Now we
present the rigorous definition.

We define an n-dimensional dynamical system to be " (the n-dimensional
real numbers) along with a function f (the evolution rule) which describes how any -
state vector x € R™ evolves in time. We will define two different types of dynamical
systems. A discrete dynamical system is one in which time is considered to have a
smallest increment. The evolution rule is a continuous function which maps each state
vector to the state vector one time unit later. We will describe the state of the system
at time ¢ by a vector x, € R". Let xo € R" describe the initial state of the system,
then for every t € N (natural numbers) inductively define x; by applying f to x;_1,
ie. x¢ = f(x¢-1). We define the trajectory of the dynamical system starting from an
initial condition xg as the infinite sequence {Xo, X1 = f(%0), %2 = f(x1), ...} = {xt}Xp-
The trajectory can be thought of as the path through which the dynamical system
evolves from the initial condition X.

The other type of dynamical system is one in which we consider time to be
continuous. The evolution rule for a continuous dynamical system is defined by an
ordinary differential equation X = F'(x), where F' : R — R" is continuous. The
state of the system at any time t is denoted as x(t). Given any initial condition
x(0) € ®", the trajectory of the dynamical system is the solution to the differential
equation passing through x(0).
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2.2. CHAOS

Devaney defines a chaotic dynamical system as a system which exhibits the
properties of
1) sensitive dependence to initial conditions,
2) topological transitivity, and
3) having topologically dense periodic orbits (Devaney, 1989, p. 50).

These properties are defined in topological terms. Say we have a topological
set J and a function f : J — J. f is said to be sensitively dependent to initial
conditions if there exists a 6 > 0, such that, for any z € J and any neighborhood N
of z, there exists y € N and n > 0 such that |f™*(z) — f"(y)| > 6. f is said to be
topologically transitive if for any open sets U and V' C J there exists a k > 0 such
that f*(U)NV # 0. Finally, f has topologically dense periodic orbits if for any open
set U C J, there exists 2 € U and a k > 0 such that f*(z) = z (Devaney, 1989, p.
50).

Intuitively, these definitions say the following. Say, we observe two different
trajectories of a chaotic dynamical system, each beginning from initial conditions very
close together. Sensitive dependence to initial conditions says that these trajectories
will eventually become far apart. A function is topologically transitive on a set
if throughout the entire set there exist initial conditions whose trajectories wander
throughout the entire set. A function has topologically dense periodic orbits on a
set if throughout the set there are initial conditions which eventually evolve back to
themselves. These three properties imply that a chaotic dynamical system will be
highly unpredictable, it will blend together, and yet there will remain an element of
regularity.

Note that Devaney’s definition of chaos applies only to the discrete case.
Appropriate modifications of the definitions apply to the continuous case. Instead of
mapping a point or neighborhood a discrete number of times, one allows a trajectory
or set of trajectories to evolve over time.

2.3. THE LOGISTIC MAP

The logistic map is a one-dimensional example of a discrete chaotic system. Let
i = [0,1] denote the unit interval. The logistic map is defined by f : pp — p, such
that f(z) = 4z(1 — z). This map has been studied in great depth and is known
to be chaotic. Figure (2.1) shows the time series from the logistic map with initial
condition zp = 0.8. As a time series the data looks very erratic. Since the evolution
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Figure 2.1: Data from the Logistic Map as a time series.

rule maps each x; to 41, the map on the phase space () can be represented in 12 ,
as shown in Figure (2.2).

At first sight this example may appear trivial. We generated data using a
parabolic map, so of course we can represent the data in an ordered fashion, i.e. along
a parabola again. The point is that, though there is a simple map f : ® — R which
governs the evolution of the system, it is not obvious when the system is viewed as a
time series.

2.4. THE LORENZ EQUATIONS

Arguably, the most widely known example of chaos comes from the Lorenz equa-
tions. In fact, people who may know very little about chaos overall stand a good
chance of having heard of this system. This chaotic dynamical system is given by an
ordinary differential equation in #3. The Poincaré-Bendixson Theorem (Alligood,
Sauer, and Yorke, 1996, p. 337) tells us that we cannot have chaos on a flow in R2, so
three is the smallest dimension on which we can have a continuous chaotic dynamical
system. The Lorenz equations are

O'(y—iE),
Yy = 5 —Y—1xU

u = —Bu+ xy,
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Figure 2.2: Delay plot of Logistic Map data.

where o = 10, r = 28, and B = 8/3 are famous chaotic parameters. We numeri-
cally integrate these equations, using the fourth-order Runge-Kutta method (Burden,
Faires, and Reynolds, 1978, p. 244), from an initial condition of x(0) = (0,1,0) with
a time step At = 10—1—00 to produce the trajectory in Figure (2.3). This trajectory lies
along what is known as the Lorenz attractor. The Lorenz attractor provides a good
example of what can happen to a chaotic trajectory. The trajectory does not wind
through all of %3, but limits on a bounded subset of %°.

2.5. TIME SERIES DELAY EMBEDDING

In the introduction we alluded to time delay embedding, now we will discuss it in
detail. Takens’s Delay Embedding Theorem tells us that we can reproduce something
equivalent to the phase space attractor of a dynamical system from only one time
series of an appropriate observation variable (Takens, 1981). This is truly amazing.
It might seem as though we would need to know how all the pertinent variables of
a dynamical system evolve in order to characterize the underlying dynamics of the
system. This is not the case. One variable captures enough information from the
other variables to draw conclusions about the entire system.

Say we have a chaotic dynamical system described by a state vector x(t) € R
Let g : R* — R, be a scalar observation function which takes any state vector to a
corresponding scalar value. This observation function usually projects a trajectory




13

50

ut)

Figure 2.3: The Lorenz attractor, also known as the Lorenz butterfly.

into one of its axes. In other words the function g can “pick off” one of the coordinates
of the state vector. For a given embedding dimension M and a time delay T, we
define the delay vector at time ¢ to be

Y (1) = (9(x(t)), 9(x(t = 7)), g(x(t — 27)), ..., g(x(t = (M — 1)7))).

So, Y(t) is a vector in M consisting of M observations of the function g
taken at equal time intervals. Much work has been done to determine the best
method for finding an appropriate embedding dimension and time delay. It has been
shown that for an M > 2n + 1 (where 7 is the dimension of the system), and almost
any delay 7, the rule which describes the evolution of Y (¢) is topologically equivalent
to the one for x(t).

2.6. THE LORENZ DELAY PLOT

The delay plot for the logistic map is perhaps not enlightening or surprising.
This is because for the natural choice of 7 = 1 time unit, the delay plot is identical
to a plot of the map of the evolution rule in phase space.

The delay plot for the Lorenz equations is very interesting. Recall that for the
Lorenz equations n = 3. We would therefore be guaranteed that a delay dimension
of M > 2n+1 =7 will work. In this case, it turns out that M = 3 is sufficient. We
denote the state of the Lorenz system at time ¢ by

x(t) = (2(8), (), u(?))-
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Figure 2.4: Topological reconstruction of the Lorenz attractor generated from only
the x time series.

To make observations on the first coordinate, we set g(x(t)) = z(t). 7 = 0.05 yields
the delay vector
Y(t) = (z(¢t), z(t — 0.05), z(t — 0.1)).
Figure (2.4) shows a plot of all the delay vectors. Note that the attractor in the time
delay coordinates looks very similar to the Lorenz attractor.
Bear in mind that the delay plot is generated solely from the apparently

sporadic z(t) time series in Figure (2.5). We need not consider the y(t) and u(?)
time series, nor even be aware of their existences, to make the delay portrait.

2.7. TIME DELAY EMBEDDING PREDICTION

Time delay embedding is not only used to characterize the complete dynamical
system in phase space, it is also used to make predictions on an observed time series.
Say we have time series {z(t;)}?,. We will represent this time series as a discrete
sequence of points. This is reasonable even if the signal producing the time series is
a continuous one, since in an actual experiment we will only be able to sample the
signal a finite number of times over some finite time interval.

We then select an M and a 7 and embed the time series by considering each

delay vector:

Y (¢;) = (z(t;), =(t; — 7),z(t; — 27), ..., x(t; — (M — 1)7)).
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Figure 2.5: Chaotic time series from the Lorenz system used to generate the delay
plot.

Say we want to predict the next value of the time series z(tq41), (since z(t,) is the
last point in the time series.) Then in the embedding space R we locate the
k nearest neighbors to Y (¢,). Denote the evolution rule G : ®¥ — RM such that
G(Y(¢;)) = Y(t;41). Since we know where each of the k nearest neighbors is mapped,
we can locally approximate G by linearly regressing these k nearest neighbors. This
local approximation of G is given by Y(to11) = G(Y (ta)) £ DG - (Y (ta)) +b, where
DG is the Jacobian derivative approximated by regression on the k near neighbors.

This is the general method currently found in the literature (Kantz and
Schreiber, 1997; Abarbanel, 1996; Sauer, 1994). Our contribution will be both
to decide when the local linear model is statistically significant, or a higher order
polynomial is needed, and to say how confident we are of the predictions. To do this
we need to discuss the statistical methods we will use.

3. STATISTICS

We now make a diversion into statistics to review some of the tools we require in
our analysis of chaotic dynamical systems. We drew heavily from Neter, Wasserman,
and Kutner’s Applied Linear Statistical Models, and Walpole and Myers’s Probability
and Statistics for Engineers.
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3.1. CONFIDENCE INTERVALS

In making a prediction we are making an estimation of a quantity. We would
eventually like to say how good the estimation is. Let us get away from predictions
for a while and begin with a simpler idea: the mean of a set of data. Suppose we were
given a sample set of data and asked to estimate the population mean from the data.
We could sum the data and then divide by the number of data points. Would this
sample mean provide a good estimate of the population mean? It certainly provides
the best point estimate of the population mean, but that does not provide an answer
to the question of quality. Statistics answers the question by providing a range of
estimation instead of just a point estimate. This range is known as a confidence
interval.

Suppose that we are trying to estimate a statistical property of a population
like the mean and that for any given sample of the population, we developed an
algorithm which defined a range of values. This range of values either includes the
true population mean or it does not. Say we have multiple samples of the population,
each yielding a range of values by the same algorithm. If we know the population value
of the statistic we are attempting to estimate, we can determine the percentage of
intervals which contain the value of the population statistic. Suppose this percentage
is 90%. Then given a random sample of data from the population, we will be able to
determine a range of values which have a 90% chance of containing the population
statistic. We could then call this range of values a 90% confidence interval.

Now, the hypotheses of the above situation will not apply for most experi-
mentally obtained data sets. For, if we know the true value of the population statistic
which we are attempting to estimate, we would not need to estimate it. This idea of a
confidence interval is very useful if we know the distribution of the population we are
sampling. But, if all we have access to is raw data, how can we know the distribution
of the population. For the mean of the population, this question is answered by the
Central Limit Theorem.

3.2. THE CENTRAL LIMIT THEOREM

Suppose that we are taking independent random samples from a population. Say
we take a number of different samples, each containing n data points. The Central
Limit Theorem tells us that as n approaches infinity, the distribution of sample means
will limit on a normal distribution, the graph of which is the famous bell shaped curve
(we will rigorously examine the normal distribution in the next section).

Figure (3.1) illustrates this fact. Various random samples of data were taken
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Figure 3.1: Histogram of sample means taken from a population with a uniform
distribution.

from the uniform distribution. Each sample of data contained ten points. One-
thousand samples were taken, and then these sample means were plotted as a his-
togram. One should note that the histogram is roughly bell-shaped.

3.3. THE NORMAL DISTRIBUTION

For a continuous random variable, the probability density function (PDF) is
defined as a function such that the area under the function between two values is the
probability that a random sample of the variable will lie between the two values. For
the normal distribution, the PDF is a bell-shaped curve. The normal distribution
has two parameters which completely determine its shape. These parameters are the
mean () and the standard deviation (¢). The mean locates the center of the curve,
and the standard deviation determines how flat or sharp the curve is. The equation
for the normal PDF is

n(z; p, o) = e~ (1/2)(z—p)/o)?

2o
Therefore the probability that a random sample of X will lie between z; and x5 is
given by the following equation,

Pr(z; < X < @) = / ? e~ W/DN-w)/ol g

2no x1
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Figure 3.2: Confidence interval for normal distribution. Confidence level is 1 — o

For a given p, 0, and o, define z,(i4,0) to be the value of z which satisfies the
following equation,
_ / ) 1 /el
o= e dz.
—o0 \/2771' g
In our applications we use a computer program (Jones, 1993) to determine the value
of z,(u,0), for a given a, p, and o.

We now know enough to determine confidence intervals on a normal random
variable X. Say we know the values of 4 and o, and we want to determine a 1 — «
confidence interval centered at = . We divide the area under the curve into three
sections. In the middle section we have 1 — a of the area, which leaves a/2 of the
area on the left and right (since the total area under the PDF is 1.) The left and
right endpoints of the interval are then L = Zq/2(p, 0) and R = 21_4/2(p4, 0) as shown
in Figure (3.2) (Walpole and Myers, 1972).

3.4. LINEAR REGRESSION

Now instead of having a problem with one random variable, let us suppose that
we have two variables, which depend on each other. By plotting the data on a
graph, we could get a rough idea of whether or not the two variables have a linear
dependence. Suppose that we have the capability to set a variable X to several
different values and then we can measure the variable Y for each value of X. We
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then plot the data and, if the data lies approximately along a line, we would like to
determine the line of best fit. The statistical technique for determining this line is
known as linear least squares regression.

We assume that we can set the independent variable X with a high degree
of accuracy. We then observe Y and assume that Y contains some random error.
We denote the ith observation as (z;,%;). We will assume that there is a lLinear
relationship between ¥ and X, but because of some random error the observations
do not lie exactly on a line. We denote this relationship by the following.

where E is a Gaussian noise term with mean p = 0.

3.5. ESTIMATORS OF SLOPE AND INTERCEPT

Given the collection of data {(z;,3;) : i € {1,2,...,n}} for some n, we would
like to know the equation for the line of best fit through the data. We will need to
determine a, the intercept, and b, the slope of this line. The equation of this line is
given by

Y=a-+ bz,

where 7 is the predicted value of y for a given z.
The best line is defined to be the line that minimizes the sum of the squares
of the distance that each y; lies from this line. We therefore want to minimize

=1

To do this we set a(f;‘zE) = a(%iE) = 0 and solve for q and b.

9(SSE)
Oa

= -2 (yi —a—bx;) = 0.
i=1

So,
Z(yz ~a—bzx;) =0,
i=1

> yi— Za—Zba:i = 0.
=1 i1

i=1
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Finally,

n n
na + bzmi = Zy,
= i=1

=1

Now for the other partial.

8(SSE)
b

_ 9 il[(yi —a—bay)z] =0,

n

S (wiys — az; — ba}) = 0.

i=1
Finally,

n n n
ain + mef = E:w,yz
i=1 i=1 i=1

These two equations are known as the normal equations for this model. Solving for

a and b yields,
B nx SXY —SX*SY

nxSX2—(SX)?

a=79— bx,

where, SXY = X0 ziy;, SX2 =X 2, SX =Yl m, SY =3, yandg
and % are the average values of the observations.

It is important to keep in mind that Y is a random variable. Therefore,
for different observations of the Y;’s we will get different data sets. Each different
data set will yield a different estimate of the true slope and intercept. Some of these
estimates will be better than others. Therefore, it is useful to think of the regressed
slope and intercept as random variables also. Given a set of data it would therefore
be useful to know how well the regressed sample values (a,b) approximate the true
population values (A, ). To do this, we must introduce a new distribution.

3.6. THE t-DISTRIBUTION

In order to determine confidence intervals on the estimates of the slope and
intercept of the line of best fit we must use the (Student) t-distribution. The PDF

of the t-distribution is given as follows,

Il(v+1)/2] ﬁ —(v+1)/2
T'(v/2)/Tv (1+ 1/) B

h(t) =
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hit)

Figure 3.3: The t-distribution for various degrees of freedom, v. As v increases the
t-distribution limits on the normal distribution.

where v is the number of degrees of freedom and I'(z) is the gamma function defined
as

(Note that I'(n) = (n — 1)!, for any n € {1,2,...}.) The t-distribution is used when
one does not know the standard deviation of the population that is being sampled and
the sample size is too small to assume that the sample standard deviation provides
a good estimate of the population standard deviation. The t-distribution, like the
normal distribution, is bell-shaped. As the number of degrees of freedom approaches
infinity, the t-distribution approaches the normal distribution (see Figure (3.3)).

In a similar manner as we did for the normal distribution, we will define £,
as the value of ¢t such that o of the area lies to the left of ¢,. It is important to
note that t, only makes sense if we know the associated degrees of freedom for the
distribution (Walpole and Myers, 1972). Again we use a computer algorithm to find
its value (Jones, 1993).

3.7. APPROXIMATION OF VARIANCE

We use the t-distribution when we do not know the true value of the population

- variance o2, Instead of 0, we use its unbiased estimate M .SE (mean squared error).




22

Say we have a set of data (z;,y;). We fit the data with a line §j = a + bz. For each
z;, we determine the predicted response ¥; = a + bx;. The sum of the squares of the
errors SSFE is .
SSE =Y (y; — %)2.
i=1
The mean squared error, defined as
SSE
MSE = ——
n—p
where p is the number of parameters which were estimated in the regression (in
this case p = 2), provides an unbiased estimate of the population variance (Neter,
Wasserman, and Kutner, 1974, p. 50).

3.8. CONFIDENCE INTERVALS ON THE ESTIMATED SLOPE AND
INTERCEPT

Suppose we have a linear model which generates data. Then for each set of n
observations, we will be able to generate a confidence interval around our sample a
and b. We expect that the appropriate percentage of these intervals will contain the
true value of A and 8. The formulas for the (1— ) confidence intervals are as follows.

l1-a/28 l1-a/28
b— ———=— < B<b+

_ V5X2 t1- v/ 2
a__tl o/25VS <A<a+ 1-a/28VOX

nSzz nSw:z; ’

where s is the estimated standard deviation,

= |SSE
T \Vn—2
SX?

Sa::z =Z(xi—i)2 =5X2— s
i—1 n

and the t distribution has v = n — 2 degrees of freedom.
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3.9. MEAN PREDICTED RESPONSE VS. SINGLE PREDICTED RE-
SPONSE

The true response of Y on ¢ is the value of Y the model will return to us if
we input xo. If all we have is a set of data, and we do not know the model from
which the data was generated, then we would like to estimate the true response of
To with a predicted response in the form of a confidence interval. We can look at a
single response or a mean response. A single response is what we expect the model
to return from the input of one single z5. The mean predicted response is what we
would expect the model to return on average.

For an estimate a and b, the point predicted response of zg is 9o = a+bxy. Of
course there is an associated confidence interval for the true response to z,, denoted

Yo-

1 Y 1 — 7\2
go—tl_a/g\/MSE(l + ; + _(5_08_'__37_)_.) <Y < :l]o-i—t]_a/g\/MSE(l + B + ‘(‘mOS—:E)),

where again the t-distribution has v = n—2 degrees of freedom. This formula applies
to a single response only. We can also look at confidence intervals on an average
response to Zo, whose true value is denoted as iy|,,,. The formula for the confidence
intervals on the mean response is
(zo — )2 1 (zo—%)2
S} < Yo+t MSE(= + ——).
S, ) Ey|zo < Yo+ li-a/2 (n S, )
The confidence interval for the mean response will be narrower than the confidence
interval for the single response. This is because the single response has the gaussian
error contribution, while in the mean response the gaussian error averages out to

1
Yo — tl_a/g\/MSE('ﬁ +

Zero.

3.10. THE NORMAL EQUATIONS IN MATRIX FORM

We will now demonstrate a more elegant way of looking at least-squares re-
gression, which allows for extension to the higher order problems we consider later.
Again, let us suppose that we have a collection of data {(z;,y;) : i € {1,2,...,n}} for
some n. Define Y to be an n X 1 column vector consisting of the y;’s. Define X to
be an n X 2 matrix whose first column is all ones and whose second column is the
z;’s. Finally define

bo
Sty
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where by is the intercept and b; is the slope of the line of best fit to the data.
Let us examine the matrix equation

X'Xb=X'Y,
where X' represents the transpose of the matrix X. ~Our notation to look at the ith
row and jth column of a matrix A will be (A);;. X'X is a 2 X 2 matrix, since X' is
9 x n, and X is n x 2. The first row of X' is identical to the first column of X, both
of which consist of 7 ones. Therefore the upper left entry of X'X is the sum of n

ones, Or
n

(X'X),;=> 1=n

, =1
The upper right entry is the same as the lower left entry, which is the product of a
row of ones with a column of z’s. So,

(X'X),; = (XX)y, = _‘;‘laxxi) - zx

Finally, the lower right entry is a product of the row of z’s with the column of z’s.

n n

(X'X)y, = Z(mi)(wi) = Z(fi)z-

=1 =1

On the right side of the equation we have X'Y, which is size 2 X 1.

n

(XIY)n = ;(1)(%) = éyi

n

(XY )0 = 3 (i) () = zzy

=1 .
Now we see that the equation X'Xb = X'Y expands to yield the following two
equations:

n n
nbo+b1 > Ti= ) Ui
i =1

=1

n n n
boY i +br Ziﬂz =Yz
=1 =1 im1

These equations are the normal equations introduced previously (with a minor re-
naming of the variables). The least squares estimates for the slope and the intercept,

is
b= (X'X)"'X'Y,
assuming that (X'X) ! exists (Neter, Wasserman, and Kutner, 1974).
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3.11. MULTIPLE INDEPENDENT VARIABLES

In our discussion of linear regression thus far, we have assumed that our data
was being generated by the model Y; = 3, + f3,z; + E; (again with a slight change
of notation). We can also look at models of more than one independent variable.
We will denote a model of this type by Y; = 8y + By + Ba%i2 + ... + BpTir + Ei,
where k represents the number of independent variables which determine Y. Again
we denote the least squares estimate to each (; as b;. To determine each b;, we form
the sum of squares of the errors, differentiate with respect to each b;, and set each
derivative equal to zero. This yields k + 1 equations in k + 1 variables.

SSE = 30k~ b bz — .~ bz’
i=1
For each 7,
O(SSE =
(Bb- ) =—2> (i — bo — by — ... — byTax)T5] = 0
o] =1

realizing that x; is defined to be identically 1.
So for each j,

n n n n n
bozwij + b1 Z.’Eﬂa)z‘j + ...+ bj Z(.’Ei]‘)2 + ...+ bk inkxij = Zyi.'Dij.
i=1 i=1 i=1 i=1

i=1

Now let us redefine some matrices. For each i € {1,2,...,n} and j € {0,1,2,..., k},
define (X)), ; = Tij, the ith observation of the jth independent variable, remembering
that Tip = 1.

Let

With a little work, one can see that the above system of equations can again be

represented by the single matrix equation X’Xb = X'Y. So again b = (X'X)_IX’Y.

3.12. ANALYSIS OF VARIANCE (ANOVA)

Recall that each b; is itself a random variable. It will be useful to compute the
variance of each.
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Again assume that a true model Y; = By + 8,2; + E; is generating data. Assume
that each observation E; is independent and has a variance of o? (denoted o? =
Var(E;)). Then Var(Y;) = o2, for each i. Now we compute Var(bo) and Var(b:).
In order to do this we need the following theorem concerning the variance of the sum
of random variables.

THEOREM:
Suppose that {Y; | i € {1,2,...,n}} is a set of independent random variables.

Let {a; | i € {1,2,...,n}} be a set of constant coefficients. Then
Var(a Yy + ... + a;Yi + .0, Yp) = a?Var(Y1) + ... + a?Var(Y;) + ... + a2Var(Yy).
So now for Var(b;). Recall that

by = nY i Y — 2% iy Y
Y1 x? — (E?:l ;)?
'?:1 miYi - % ?.—:1 Z; Z?:] K
2 1
i=1T; — n (E?=1 xi)z

Since,
S (@ - D)= (aYi—2Y:) =) aYi—z) Y
=1 1= =1 =1
A SR
i=1 nia =
and,
n n 9 n n

we can write b; as
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By representing b, as a sum of the Y;’s,

(z; — 2)Y; (z; — 2)Y; (zn — Z)Yn
e e O TR N 1
! Sy (@i — 2)? i1 (i — 7)? S (i —2)?

and by the above theorem we derive that

Var(h)
(zy — 7)? z; — I)?
= (}:?:12331' — E)Z)ZVar(Yl) 4.+ (Z?il(a:,- _)j)z)ZVar(Y,-) + ..
(z, — T)? o, Yha(ma—3)? o2
G o e A5 N P Rl S I P
Now for bs. Recall that
bo = 'g - bli‘

So (by the above theorem)
Var(by) = Var(g) + 2°Var(by).

Now we compute,

Var(g) = Var(ﬁ ZK) = Var(—ﬁYl + ...+ ﬁYi 4.+ ;Yn)

1 1 1
= ;éVar(Yl) + ot SVar(Ys) + ... + 5 Var(Yy)
_a? o2 no® 1,
I R
And,
n 2 2 n 2
22V ar(b,) = — )2 g _9 (fg %)
Vart) = QP S e T W LD
So,

_ 02n2?=1($i — IE)2 + ( 1 xi)2
n? 3 (z; — 7)?
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2"2 Lzt (O m)? 4 (T, 3)° _ 2 S x?
n? 35 (T — z)? n E?:l(xi —I)?
2
1%

n i 2 — (X 2:)*

2

So,
o2

Var(bl) = m,

and,
n 2
i=1T;

Pz — (T )

After that harrowing derivation we will again demonstrate the conciseness of
using matrix notation. We define the variance of a n X 1 column vector d to be an
n X n matrix where ’

bo) = o
Var(bo) o

(Var(d)),; = Cov(d;,d;).

Even though we have not defined cov (the covariance of two random varlables) it 1s
sufficient to know that Cov(d;,d;) = Var(d;). It is true that Var(b) = o 2(X'X)!
We will now show that (Var(b)),; = Var(by) and that (Var(b)),, = Var(by).

n
n i1 Lg
! o =1 V1
XX=|3, =%
=1 1=1 i

So

2 n 2 n
o i=1 i = i1 T ]

nZz—l x? — (X 7:)? [ Y% N
Indeed our assertion that (Var(b)),, = Var(by) and (Var(b)),, = Var(b;) is true
(Neter, Wasserman, and Kutner, 1974).

oA(X'X)™

3.13. CONFIDENCE INTERVALS ON PREDICTIONS

Matrix notation gives us a very concise way of determining confidence intervals
on fits of data. Say we want to determine the confidence interval on a response to xo.

(1]

First we define,
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Note that the point response is given by y, = 9o = xb. We will show that the
width of our confidence interval is

1 (.’E() - 5)2

n Saz

w = tl_a/z\/ﬂ/ISE (X'X) 1xp) =t a/2\/;\/[SE( ),

by showing that
o 1 (zo—17)?
X(XX) 0 = 7+ (O—S—)_

First, expand the matrix notation:

1z z:ln i =1 .
ny i — (7 1371)2[ o [ T Za=1Ti M ] l Zo ]

Let us focus on the numerator,

X;l (XIX) -1 Xp —

2

LA o — Z".’ I 1 n n
1z =1 =1 =522 - 250 z; + nx?
[ 0] _xn ) Zo ; i O; I + 0

n 4 2 n \2 n
:Z$?—2(21:1$1) +2( iZle) -I—n:cg—Z:L‘oZa),

i=1

n n 32 n 2 n
=fo—2( 1 1) +2n( i1 %) +na:(2)-2aroz:ni

n n =1

= fo — 2——-——( i1 %) + 2nZ? + nxl — 2nze == i

= fo - 2:82:5, + n3? + nad — 2nzeT + ni’
i=1 =1
n
=Y (z; — )’ + n(zo — T)°.

i=1
So the entire fraction equals

i (i — 53)2 +n(m—2)? _ FLi(z — 2)° 4 n(ze — 7)°
nYy g xf — (X T:)? nYy i (T — T)?
. 1 (ZEO - 5)2
RE R N Ly

thus establishing our use of matrix notation. So we now have a concise way of
computing confidence intervals on predicted responses.
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3.14. HIGHER ORDER POLYNOMIAL FITS TO SINGLE INDEPEN-
DENT VARIABLE

The method of linear regression of multiple independent variables provides an
easy way to fit a function of higher powers of a single independent variable to data.
We will demonstrate this in the case of a parabolic model. Suppose we have data
generated from the model ¥; = Bo + Bz + Byx2 + E;. Then we simply adjoin a
third column to X, consisting of the square of each x;, and proceed to compute
b = (X'X)"'X'Y.

We now illustrate the fitting of higher order polynomials to data. We use
the model Y; = 1 +4z; + 2:1:12 + E; to generate the following data.

z; | Y

1.0 | 3.23
2.5 | 20.54
3.0 | 16.25
5.2 | 73.54
6.7 | 118.76
7.3 | 139.93
8.1 | 179.06
9.0 | 195.49

o] ~3| o or| x| ol o ]| >

So i
1.0 1.0 ]

2.5 6.25
3.0 9.00
5.2 27.04
6.7 44.89 |’
1 7.3 53.29
1 81 65.61
|1 9.0 81.00 ]

1323 ]
20.54
16.25
73.54
118.76
139.93
179.06
| 195.49

[ Y T
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Figure 3.4: True parabola which is used to generate the data versus parabola of best

fit.

and we compute

—6.78
b=(XX)"'X'Y =| 455
2.10

Figure (3.4) shows the data, the true parabola, and the fit parabola. By
looking at the graph it should appear that the regressed model fits the data better
than the true model. The criterion we use to determine how well a model fits data
is the sum of the squares of the error (SSE). For the true model, SSE = 478.1,
while for the regressed model SSFE = 315.18, the minimum possible value for an SSE
obtained from a parabola running through the given data.

Please note that while all the above formulas were proven for either a linear
or quadratic fit, the formulas remain the same for a polynomial fit of any degree
(Walpole and Myers, p. 335). We simply adjoin columns to X of the original data
raised to successive powers.

3.15. APPROPRIATENESS OF HIGHER ORDER FITS TO DATA

Any analytic function has a Taylor expansion. This means that any well-behaved
function can be approximated by a polynomial function. So in terms of regression
fitting, we now have the tools to fit a polynomial of any order to data generated from
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an analytical dynamical system Zp1 = f(%5), in a “small” neighborhood of the point
whose evolution we wish to predict.

3.16. STATISTICAL TESTING

Before we jump into the following test, it would be wise to say a few words about
general statistical hypothesis testing. ~ Often a statistical test consists of testing
whether to accept or reject a statistical hypothesis. ~The null hypothesis is the
hypothesis which will be accepted unless there is evidence to the contrary, in which
case we will reject the null hypothesis and conclude the alternative hypothesis, which
is the negation of the null hypothesis. There are two types of errors which may be
made in this type of testing, usually denoted a Type I error or a Type II error. A
Type I error is made when one rejects a true null hypothesis. A Type II error is
made when one accepts a false null hypothesis. The alpha level in this test represents
the chance of making a Type I error. There is also a beta level which represents the
chance of making a Type II error. In most tests of this type, the alpha level is set,
but the beta level is unable to be computed. In determining confidence intervals, we
do not want to set the alpha level too low, because it makes the confidence interval
too large to be useful. In a test of this sort, if we set the alpha level too low, i.e.
we choose to rarely reject the null hypothesis, it will drive the beta level up (Walpole
and Myers, 1972).

A useful analogy can be made between this sort of testing and a trial in an
American court. In court the null hypothesis would be that the defendant is not
guilty, since he is “innocent until proven guilty.” The alternative hypothesis is that
the defendant is guilty. In the American justice system the alpha level is set to be
very small; the idea being that we rarely convict an innocent man. We accept the
fact that the beta level may be significantly high, as described by the idea that we
would rather set free ten guilty persons than convict one innocent man. A very
low alpha level corresponds to a level of proof of “beyond a reasonable doubt”, while
a higher alpha level would represent “clear and convincing evidence” or higher yet
“preponderance of the evidence” which is used in several types of military hearings.

3.17. THE t-TEST FOR DEGREE OF POLYNOMIAL, FULL MODEL
VERSUS SUB-MODEL

Say we are given a set of data which appears to have a slight curve to it. It
would be nice to know whether or not the best fit parabola yields any more information
than the linear fit. Is the “slight curve” statistically significant enough to support
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a quadratic full model over the simpler linear sub-model. The t-test is just such a
test. Let us suppose that we fit the function Y; = by + b1z; + byx? to a set of data.
Let B, = E(b), i.e. (B, is the expected value of by. We will test the following set of
hypotheses:

HO . ,62:0
HA . ﬁ27é0

Where Hg is the null hypothesis and Hy is the alternative hypothesis.
To do this we will compute a test statistic ts and compare it to {(1_q/2,n-3) =
tcomp- The variable ts is computed as follows.

— b2
- 3{[)2}

where s{by} = 1/s2{b;} is the unbiased estimate of the standard deviation of by. s2{b,}

is easy to compute. First we compute s?{b} = MSE (X’X)—1 and then pick off the
appropriate value from the matrix. If £, < {(1-a/2,n—3), Wwe conclude Hp: 8, =0. On
the other hand, if ¢, > ¢(1-a/2n-3), We conclude Hy: B, # 0. (Neter, Wasserman,
and Kutner, 1974)

We view this procedure as the test of a full model versus its sub-model. The
sub-model is valid when the full model degenerates by having a very small leading
coefficient.

ts

4. STATISTICS IN DYNAMICAL SYSTEMS

We assume a low dimensional chaotic dynamical system, subject to additive
noise, Zn11 = f(z,) + E,. We use the above ideas to select the statistically signifi-
cant polynomial model in the neighborhood of a point x, which we wish to predict the
response f(z,). Taylor’s theorem gives us good reason to believe that a polynomial
will approximate the function in a small enough neighborhood. This represents a
significant improvement in the current state of technology in which researchers select
a linear model and haphazardly choose several near neighbors. We also offer a state-
ment on the quality of the prediction in terms of confidence. These advancements in
dynamical systems theory are made by slight modifications on the above tools bor-
rowed from statistics theory. What follows can be considered to be new technology
we are developing for the physical scientist.
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0 500 1060

Figure 4.1: Time series from the Logistic Map.

4.1. FINDING K FOR A SPECIFIED DEGREE POLYNOMIAL FIT

We now return to the setting of time delay embedding prediction and ask the
question: How do we choose the best number of near neighbors to use in our regression
of the data? Say we want to use a linear fit to make predictions on the time series
generated from the logistic map with an additive gaussian error term. First, we
generate a time series starting from an initial condition of z; = 0.4 and, for each
n € {2,...,1000}, we set z, = f(Zn-1) = 4@n-1(1 — Tp-1). We add a normally
distributed random noise term to each z, producing the following time series shown
in Figure (4.1). ,

Say we want to determine what point in the time series would follow zo = 0.35.
First, we embed the time series in one dimension with a time delay of one iterate,
and then we regress a line from the k near neighbors to £o. Now we have to choose a
value of k. Let us regress a line from the 300 near neighbors (shown in red in Figure
(4.2)) to xo. It is apparent from Figure (4.2) that the data is significantly curved,
and the line of best fit does not accurately fit the data at x.

Using the t-test, we compute that the significance level for this fit is o =~ 0.
This means that we are almost 100% positive that we are not making a Type-I error.
Which also means that we are almost 100% positive we are making a Type-II error.
Recall that a Type-I error is erroneously calling linear data nonlinear. The way to
avoid this type of error 100% of the time is never to call any data nonlinear. To sum
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Figure 4.2: Line of best fit, regressed from too many near neighbors.

it up, this is a very bad fit.

Let’s examine the flip-side of the same coin. What if we use too few near
neighbors? Figure (4.3) shows a fit to the 10 near neighbors of z5. To help see the
problem Figure (4.4) is a close up of the region around zo = 0.35. Since the slope is
clearly wrong, we do not want to use a fit such as this.

What happens in the very small region around zy is that the statistical errors
become too significant to determine the shape of the attractor. The problem becomes
worse if we use a very dense set of points in a very small interval of the x-axis. We
have been looking at an attractor with N = 1000 points on it. Now lets fill the
attractor with N = 100000 points and fit a line and a parabola to the 200 near
neighbors of 2o = 0.35. Figure (4.5) shows the fitted parabola and line. Figure (4.6)
is the close-up view.

What is wrong with these pictures? From the blown up picture, we see
that the data appears as a cloud. The error blurs the structure. There is a more
significant problem though. We can choose to tighten up the region on the x-axis
as much as we like, but we have no control on the y-axis, the standard deviation of
the error controls this size. Looking at too small a region on the x-axis produces the
phenomenon which we termed the “¢all skinny boz” problem. Note the x-scale versus
the y-scale. The increment on the y-axis is about 0.08 units, while the increment on
the x-axis is only 0.003 (differing by a factor of approximately 30). Note that both
the fits are not very good. The slope of the line is off (imagine a line tangent to
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Figure 4.3: Line of best fit, regressed from too few near neighbors.
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Figure 4.4: Closeup of data used to fit line in previous figure.
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Figure 4.5: Linear and quadratic fits using too few near neighbors on densely filled

attractor.
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Figure 4.6: Closeup of near neighbors from previous figure.
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Figure 4.7: Plot demonstrating that the linear model becomes more appropriate as
the nearborhood size becomes smaller. ¢ > 0 implies that the quadratic map must
be used. ¢ < 0 implies that the linear map is appropriate.

the attractor) and the parabola is too narrow. In even more extreme cases we get a
computer error (much akin to division by zero), since the data begins to line up along
a vertical line. ‘

In writing the code for this problem the first step was to start searching for
what we call the critical value of k, k... We defined k., as follows. Say we were
attempting to fit a line to the k-near neighbors. Then for each value of k we fit the
data with a parabola, y = bg + b1z + byxz?. By doing so we assume that the data is
coming from a parabola, y = By + 51z + Box? + E. We then use the t-test to tell us
whether or not 3, = 0. Le. is it really necessary to look for a parabola or would a
line fit the data just as well? We call k., the value of £ such that for k = ke, the
t-test says use the line, but for k = ke, + 1, the t-test says use the parabola.

A problem occurred when using large amounts of data. Look at the logistic
map with N = 1000, and let’s suppose that we want to fit a line through zo = 0.35.
Consider Figure (4.7). On the x-axis is k, the number of near neighbors to Zo. On
the y-axis is t = t, — teomp (s€e Section 3.17). If ¢ > 0, then we conclude that we
must use a parabolic fit, but if ¢ < 0 a linear fit will suffice.

For this set of data, the way in which we defined k., is unambiguous. Once
the graph crosses into the linear region it stays in the linear region. But for larger
amounts of data, k., may be ambiguously defined i.e. there is not a single crossing
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Figure 4.8: Plot of t versus k for very long Logistic time series. The attractor is
more densely filled than in the previous figure.

point, but the graph may oscillate between quadratic and linear regions. Figure (4.8)
is the plot of t versus k, but this time with N = 100000. Notice that by the time we
have narrowed our region down to the 1000 nearest neighbors, we are already in the
linear region. But around k = 800, the graph reenters the quadratic region. It jumps
back and forth between the two regions several more times. Therefore, for us to speak
of the value of k., is a mistake, as we have defined it, k.. is not unique. Think of
it in the following terms. Say we have a region containing k., near neighbors. The
t-test tells us that we have data which appears linear. When we add the next nearest
neighbor into the analysis, the model needs the quadratic term (by definition of k.,).
It may very well happen that the next nearest neighbor again makes the data appear
linear, and will reverse the decision of the t-test back to linear.

The two most logical choices we have for k.. is the largest value or the smallest
value of k with the defining property of k... Often scientists like to fit data in as
small a region as possible. This is because the error term on the Taylor series
approximation to the function is governed by the size of the interval. If this were
our goal we would use the smallest value of k... But as we get to very small values
of k we have already seen the tall skinny box problem arise. Also the fluctuations
at the extremely small values of k can be thought of as noise, in which case it would
be almost meaningless to use any of them. However, this begs another question.
What is to say that the initial crossing of the function from the quadratic region to
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Figure 4.9: Histogram of k., for the Logistic Map.

the linear region is not itself noise? It certainly varies with the random error, but is
it more a function of the attractor or the random error. Figure (4.9) addresses this
issue. Since k., is distributed about some expected value, we conclude that k., is
a function of the attractor and the point to be predicted, xy. We therefore make the-

following definition.

Definition: Given a 1-dimensional embedding of a chaotic dynamical system,
and an z, from which to predict f(z,) based on linear regression of degree m of
the k nearest neighbors to z,, define k., as follows. k., = max{k : By = 0 but
B i1 7 0} where B, ; is the coefficient on £™ in the regressed model of f about z,
using k near neighbors to x,.

4.2. BAND SIZE ON RESPONSES

Say we have an embedded time series in 1-dimension and we would like to look
at interval responses to f(z,). Then, for any degree polynomial model, we have
determined a way to choose the number of near neighbors to use in the fit of f. Is
there an algorithmic way to choose the degree of the polynomial? Let us again look
at the data from the BZ reaction. Figure (4.10) shows the confidence bands across
the spectrum of z's covered by the embedded data. To make the graph a grid of
xg,s was selected. For each z,, we determined k. for a linear fit (i.e. the largest
number of near neighbors in which the quadratic fit degenerates into a linear fit.)
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Figure 4.10: Confidence bands from fitting local linear model to BZ reaction data.

This test requires an « level, which is the probability of making a Type-I error. We
set @ = 0.1 which means that for the k.. near neighbors to each %, we have a 10%
chance of erroneously declaring the linear fit not statistically valid. We then fit the
95% confidence bands to each predicted response.

Figure (4.11) contains a graph which is generated in entirely the same way
except that instead of using a linear fit at each z,, we use a quadratic fit. Note
that for most values of z,, the bands from the quadratic fit appear tighter than the
linear fit, though there are some places where the linear fit appears smaller. If
we need to decide between either the linear or the quadratic in a global sense then
one might use the area between the bands as the deciding factor, with the smaller
area representing more accurate prediction capability. We ran a rough numerical
integration to approximate the area between the bands and found that the area
enclosed by the linear fit, A; = 5150, while the area enclosed by the quadratic fit was
Ay = 4570. If we had to settle on one fit we would choose the quadratic, but we do
not have to choose one. The predicted responses are not global in nature, they are
local to each z,. Therefore if we are interested in attaining the smallest bands, it
might be useful to determine what degree fit to use based on the size of the confidence
interval it produces. To produce the global picture this means that at each z, we
would keep the bands which have the smallest width. Figure (4.12) demonstrates
what that would look like.

While this procedure is advantageous from the point of view of producing
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Figure 4.12: Confidence bands formed by pointwise choosing the smaller of the linear

or quadratic bands.
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smaller bands, it has some drawbacks. The higher order models allow us to use a
larger region of data since these models can account for curvature in the data. This
increases the number of data points that we are fitting the model to and the number
of parameters that we need to fit. Therefore, the algorithm takes up much more time
to run on the computer.

Statisticians are often skeptical about fitting higher order polynomials (above
cubic) to data. We recommend that for a typical data set the model be restricted to
the linear case unless there is some theoretical consideration which suggests that the
data tends to fit well by a higher degree polynomial fit.

4.3. BENCHMARKING THE 1-D PROCEDURE

Now we would like to establish that the above described procedure is giving
us correct interval predictions. We will look at several different data sets and run
slightly different tests on each.

4.3.1. LOGISTIC DATA
The version of the Logistic Map we use to test the algorithm is

ZTny1 = f(zn) + En = 3.85 %z, (1 — z,) + B,

We generate a time series by iterating this map from an initial condition of zg = 0.7,

and at each step we add a normally distributed error with parameters 1 = 0 and

o = 0.01 to each term. We embed the data and from the first 100 values of the

time series, we make 90% confidence bands. This is illustrated in the Figure (4.13).

In order to test the accuracy of these bands, we then look at the next n embedded

points and determine the percentage of points F, which lie inside the bands. The
values for select values of n are given in the chart in Table (4.1).

| n | 100 | 1000 | 10000

| P, | 84.0| 87.8 | 87.6

Table 4.1: For a test series n units long, P, is the percentage
of times the true evolution of the system fell within the 90%
confidence bands generated from 100 points.

Next we examine what happens as the number of points used to generate the
bands is increased. We generate the bands shown in Figure (4.14) by using the first
1000 points of the series. When we test the accuracy of these bands, we get the

results shown in Table (4.2).
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Figure 4.15: The 90% confidence bands generated from a 5000 point Logistic Map

time series.

n | 100 | 1000 | 10000
P, 920 90.6 | 90.2
Table 4.2: For a test series n units long, P, is the percentage
of times the true evolution of the system fell within the 90%
confidence bands generated from 1000 points.

Finally we use 5000 points to generate the 90% confidence bands shown in
Figure (4.15). The results are given in Table (4.3).

n | 100 | 1000 | 10000
P, | 880 89.3 | 90.2
Table 4.3: For a test series n units long, F, is the percentage
of times the true evolution of the system fell within the 90%
confidence bands generated from 5000 points.

We should expect the accuracy of the prediction bands to get better as the
number of points used to generate them is increased. The data supports this to some
extent, though the bands generated from 1000 points appear to do as good a job as
the bands generated from 5000 points.
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Figure 4.16: Lorenz z(t) time series.

4.3.2. LORENZ INTENSITY RETURN DATA

Consider a Lorenz time series {z(t) : ¢ > 0}. Define t, as the time at which
the nth local maximum occurs. Let I, = z(t,). There is a function f, known as an
intensity return map, which maps each I, to f (I,) = Iny1. To see this, we generate
the time series {z(t) : t € {0, ..., 100}} shown in Figure (4.16). If we plot each local
maximum versus its predecessor, we get the cusp in Figure (4.17).

We generate the time series by numerically integrating the Lorenz equations
(three ODE’s) using the fourth-order Runge-Kutta method (Burden, Faires, and
Reynolds, 1978, p. 244). The cusp in Figure (4.17) is generated by choosing a
small time step At = 17.10—0. In order to simulate noise, we increase the time step to
At = 515, and get a much less accurate approximation of the time series. Therefore
the intensity return data will contain more error as shown in Figure (4.18).

Now, we generate confidence bands using the first 100 points from the data
(Figure (4.19)). For the next n points in the sequence we determine what percentage
P, of the data lies inside the bands and display this in Table (4.4).

n | 100 | 1000 | 10000 | 20000 | 30000
P, 960|966 | 960 | 96.0 | 95.9
Table 4.4: For a test series n units long, F, is the percentage
of times the true evolution of the system fell within the 90%
confidence bands generated from 100 points.
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Figure 4.18: Successive maxima plot from z time series of Lorenz system with A =
0.05. The large time step introduces a non-gaussian error.
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Figure 4.19: The 90% confidence bands generated from the first 100 points of the

successive maxima map from the z Lorenz time series.

These bands appear to be 96% confidence bands, instead of the hoped for 90%.
Figure (4.20) shows the bands made with 1000 points of the sequence.

n | 100 | 1000 | 10000 | 20000 | 30000
P,191.0| 912} 915 | 91.8 | 91.6
Table 4.5: For a test series n units long, F, is the percentage
of times the true evolution of the system fell within the 90%
confidence bands generated from 1000 points.

The results in Table (4.5) show that the bands come reasonably close to capturing
90% of the data.

The statistics involved in these tests assume that the error on the data is
from a gaussian distribution. Instead of artificially adding a Gaussian noise term,
this method of simulating noise produced an unknown error distribution. This test
helps to validate the use of this method to sets on which the distribution is either not

known or possibly non-gaussian.

4.3.3. LASER DATA

In 1991, the Santa Fe Institute released several time series for a competition
dealing with predicting the evolution of the time series. ~One of these data sets
is a time series of intensity from an NH;-FIR laser collected by U. Hiibner, N. B.
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Figure 4.20: The 90% confidence bands generated from the first 1000 points of the

successive maxima map from the z Lorenz time series.

Abraham, C. O. Weiss and others at PTB Braunschweig in Germany (Weigend and
Gershenfeld, 1993). Figure (4.21) shows the first 1000 points of the series.

Hibner et al. show that the semiclassical laser equations are the same as
the Lorenz equations with the parameters chosen correctly. This inspired us to look
at the intensity return plot. Figure (4.21) contains only the first 1000 points of
the series. The entire series has approximately 10000 data points. In this series
there are approximately 1300 local maxima. The intensity return plot and the 90%
confidence bands are shown in Figure (4.22).

The center section of the data is well grouped together with only a few out-
liers. The extremely low values, as well as the extremely high values, of I, map to
a wide range of I,11’s. The size of the confidence bands reflect the reliability of our
predictions. In the regions where our data is dispersed, the confidence bands are
wide. Where the data is tightly grouped, the bands are narrow. From the size of
the bands, we can separate the range of values of the I,’s into an interval which is
“predictable” and two intervals which are “unpredictable.”

While our point prediction method does yield a prediction, our interval pre-
dictions tell us where we can trust the predictions. One might offer the objection
that it is possible to look at the data, see where it is “dispersed”, and then decide
what predictions are trustworthy and which ones are not. Recall that one of the mo-
tivations for this project is to provide an objective method for determining confidence
on predictions. What the predictions will be used for will determine how accurate
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Figure 4.22: Intensity return plot for the NH;-FIR laser data. This data provides a
good example of an embedding which has regions of both high and low predictability.
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the predictions need to be. Once a tolerance is decided upon, we can determine
(with this method) the width of the confidence interval, and if it exceeds the level of
acceptability, then we know not to trust the prediction.

Being able to predict some of the time is better than never being able to
predict. Knowing when we can make a prediction on the data is better than not being
able to tell the difference between predictable and unpredictable. Consider the system
which represents the “be all and end all” for time series prediction: the stock market.
If an analyst could recognize when the stock market enters a region of predictability,
then he could determine when to invest and when to wait. Even though he would
not be able to make predictions all of the time, he would be able to wait until the
data entered a region of predictability.

The stock market is cursed (from a prediction point of view) with a dimen-
sionality problem. Its dimension is so high that we may not have enough recorded
data to be able to adequately cover the attractor. This would be like trying to
determine the shape of the Lorenz attractor by covering it with a handful of points.
The process of time delay embedding looks back through the record of the time series
to find the sections of data which most closely resemble the data near the predic-
tion point. If it takes a large number of delays to be able to uniquely represent a
point in the phase space, then a very large time series is necessary to fill out the
high-dimensional attractor. This drives up the length of the recorded data set. It
may be that the stock market has not been around long enough to see enough of its
attractor.

This method lays the ground work for the more general multi-dimensional
case. In one dimension, it is possible to look at the data and determine to what
degree the data is dispersed. In the multi-dimensional case it is very difficult, if not
impossible to visually display the data in an informative way. When this algorithm
is generalized to higher dimensions, it will provide a quantitative measure of the
reliability of a prediction even when we cannot display the data in 2 or 3 dimensions.

4.4. TIME DELAY EMBEDDING THE LASER DATA

The intensity return map for the laser data does not appear to embed nicely in
one dimension. The analysis of confidence bands is useful for demonstrating that the
size of the confidence bands in regions of low predictability are large. We will now
attempt to time-delay-embed the laser data.

Recall that the time delay vector has the form

Y (t) = (9(x(2)), g(x(t = 7)), g(x(t — 27)), .., g{x(t — (M — 1)7))),
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Figure 4.23: Example of a periodic signal being sampled at its natural frequency.

where x(t) is some unknown vector valued function consisting of all the pertinent
variables which drive the output of the laser. Recall that the laser data consists of
data observed during an actual experiment. As such, our time series is a discrete
sequence, which we will denote as {z(t)}{,, for some large N. Therefore our obser-
vation function g must map the state vector to our data points, g(x(t)) = z(t). We

will now illustrate some possible ways to choose 7 and M.

4.4.1. CHOOSING T

Consider the function of z = sin(2nt). How many times should we sample this
function to get an adequate idea of what the signal looks like? The period of this
function is T = 1. If we sample at this period, we get a constant sequence and have
no idea what is the actual function as shown by the graph in Figure (4.23).

A rule of thumb is to sample at T = 71 (one quarter the natural period, in

the general case). By doing this we assure ourselves of getting a more accurate

representation of the signal.
The pesks from the laser data occur at fairly uniform intervals. Contained within

the 9093 total data points are 1266 local maxima. Therefore we approximate the

natural period to be %% = 7.2 data points per cycle. We then choose 7 = 2. Figure
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Figure 4.24: Each star represents a discrete data point of the signal. A time delay
of twice this interval works well for embedding the data.

(4.24) shows the samples of the signal.

4.4.2. CHOOSING M

Once we have chosen T we must choose M the embedding dimension. To decide
the embedding dimension we use the technique of finding false near neighbors. Say
we have an embedding of dimension d. Say that we have two points = and y which
are far apart, i.e. they are not near neighbors in the d dimensional embedding. If,
when we project z and ¥ into dimension d — 1, they appear to be near neighbors, we
say that z and y are false near neighbors in the dimension d — 1 embedding. The
presence of many false near neighbors indicates that the data should be embedded in
a higher dimension. This test requires an arbitrary measure of closeness, €. If two
points are closer together than € in the d — 1 dimensional embedding but farther apart
than € in the d dimensional embedding, they are considered to be false near neighbors.
Figure (4.25) shows the graph of false near neighbors shown as a percentage of the
number of pairs of points for several dimensions and ¢'s.

The embedding dimension appears to be d = 4 or 5 , since in this embedding the
percentage of false near neighbors has dropped to almost zero.
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Figure 4.25: Percentage of false near neighbors of embedded laser data for various

dimensions and epsilons.

4.5. WHERE TO GO NEXT

The next step is to look at predictions on the multi-dimensional case (M > 1).
Let X (t;) be the delay vector at time t; for a given time series and embedding,

X (&) = (z(t:), 2(t; — 7), 2(t: — 27), ozt — (M —1)1)).

We will look for the evolution rule, G : G(X(t;)) = X(ti41). Say we want to
approximate G at some particular X(t,). We collect the k nearest neighbors to
X(t;), and regress a linear approximation for G. Again we will use the largest k such
that the sub-model is appropriate. In this notation G is a function from M — RM.
G is a degenerate function though, since all but one component of X(t,,1) is already
determined by X(t,). This will simplify the computations and we only need to fit a

function G' : G/(X(t:)) = z(ti41) (Bollt, 1999).

5. CONCLUSION

In this project we explored the procedure known as time delay embedding and its
use in making predictions on time series generated from chaotic systems. Our goal
was to determine a way to make a statement of confidence along with the prediction.
We had two other constraints. We wanted to do this in an algorithmic way and we
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wanted the procedure to be a general one which, in principle, we could apply to any
chaotic time series.

The method of prediction we used required us to embed the time series into
delay space. For our purposes, we assumed that we are given a good embedding.
This means that we know the time delay, and the embedding dimension for the time
series. To make a prediction from a point, first we found a set of nearest neighbors
to the point in delay space. We then regressed a model through these neighbors and
used the model to determine the evolution of the prediction point.

We showed that if we ensured that our model adequately fit the data, then
statistics would provide an accurate method of determining confidence intervals. Our
question then became how to best choose k. The simplest model to fit is the linear
one. A local linear approximation to an analytic function is valid only over a small
region. Since this project only considered finite fixed data sets, k directly determined
the size of the region the model is fit over. If k was chosen too large, the data would
significantly curve away from the model. This seemed to indicate that a small k
would be best. We did not want k to be too small though, since the effects of noise
are more pronounced in a small data set. We showed that a way to balance these two
considerations was to fit the largest k possible such that the model still sufficiently
fits the data.

What does it mean for a model to adequately fit data? One meaning is that
the model one degree higher actually degenerates to the original model. In the case
of the linear model, we would first fit the quadratic (full) model, then examine the
quadratic coefficients. If they were insignificant then the model degenerates to the
linear (sub) model. In this case we say that the linear model adequately fits the
data. Statistics provides a way to test these coefficients for significance. Since we
then had a model which adequately fit the data, the confidence intervals of prediction
were accurate.

In answering our original question concerning confidence intervals, we had
to answer a more basic question concerning prediction. Both of these questions
were answered using statistics which provides the algorithm based approach we were
looking for. It also gives the benefit of treating the time series as a generic data set
without attempting to utilize any knowledge of the system whence the data came.
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